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J. Phys. A: Math. Gen., Vol. 12, No. 9, 1979. Printed in Great Britain 

Convergent sequences of Legendre Pade approximants to the 
real and imaginary part of the scattering amplitudes 

A K Common and T W Stacey 
Mathematical Institute, University of Kent, Canterbury, Kent 

Received 6 November 1978 

Abstract. We extend the results of earlier work, by showing that convergent sequences of 
Legendre Pade approximants may be constructed for the real part of the scattering 
amplitude corresponding to a wide class of potentials including the pure Yukawa potential. 
Corresponding sequences of approximants to the imaginary part of the scattering amplitude 
are shown to converge for a wider class of potentials than proved previously. 

1. Introduction 

In previous papers (Common and Stacey 1978a, b) we investigated properties of 
approximants to Legendre series analogous to corresponding Pade approximants to 
power series. Applications were made in that work to summing the partial wave series 
of the scattering amplitude in potential scattering. 

We were able to prove that sequences of our approximants to the imaginary part of 
the scattering amplitude converged for a certain class of potentials and also for the 
Coulomb scattering amplitude. It is the first purpose of this paper to extend these 
results by constructing convergent sequences of approximants to the real part of the 
amplitude. Our method is to start from the Mandelstam representation for the real part 
of the scattering amplitude 

where 1 = -2s(l -cos e) ,  s =energy and 8 is the scattering angle. M is the number of 
bound states with energies s = -s, and Ti(t) are the residues at these poles. Finally 
p(s, t )  is the double spectral function and pi(s) the single spectral functions. Much work 
has been done in investigating when this representation can be proved to exist; in 
particular we used in our earlier work the result that this can be done (Bessis 1965) 
when the potential V ( r )  is hoiomorphic in Re r > 0 and bounded by 

for I r l s l , p < 2  I W)I < Klr/rP 

IV(r)l<Klrl-Y exp(-p Re r )  f o r j r l > l , k > O  
(1.2) 

0305-4470/79/091399 + 19$01.00 @ 1979 The Institute of Physics 1399 



1400 A K Common and T W Stacey 

where y > i. These results have been improved by Brander (1969a) to include those 
cases where ;i 2 y > 2. 

However, as has been pointed out by Frederiksen et a1 (1975), in order for the 
principal value integrals to exist p(s, t )  must satisfy certain continuity conditions in s. 
Although in the above work it was stated that p(s, t )  is continuous in s, no precise 
continuity condition was given. As this continuity plays an important role in the proof 
of convergence of approximants, we start in § 2 by proving continuity in energy of the 
partial wave amplitudes and from this derive a corresponding property for p(s, t ) .  With 
this latter property we are then able to show that sequences of Legendre Pad6 
approximants may be defined which converge to Re  F(s ,  t )  for all potentials belonging 
to the class given by (1.2) but with y > : .  This result with the definition of the 
approximants are contained in the statement of theorem 2.5. 

7 

In § 3 we consider the class of potentials defined by 

where 1 < y as U + p and O ( U ” - ~ )  with p < 2 as U + CO. These potentials satisfy 
equation (1.2) and have the holomorphy property. We show that theorem (2.5) holds 
for this class of potentials as well and also the important case of the pure Yukawa 
potential 

V ( r )  = G exp(-pr)/r. 

It has been shown by Brander (1969b) that, although p(s,  t )  is not a continuous 
function of t for potentials given by equation (1.3), its singularities are integrable for 
$< y s $. We will give in 9 3 a different method for obtaining this result and show that 
our approximants to Im F(s,  t )  defined previously (Common and Stacey 1978b) con- 
verge for this extended class of potentials. 

In § 4 we describe briefly the conclusions of this work, and finally give in several 
appendices details of some of the mathematical proofs. 

2. Approximants to Re F(s,  c) 

We start by definingf(v, k )  to be an analytic continuation of the partial wave f r ( s )  into 
the complex U = I + 4 plane with s = k . The following two results hold for the class of 
potentials given by equation (1.2): 

2 

Theorem 2.1. Let C be the contour in figure 1 such that all poles of f(v,  k )  are to the 
left of it for all k > 0, and having right-hand extremity Lo - U with Lo a positive integer 
and 0 < CT < t. If V(r) satisfies the condition (1.2) with y > $, then for all k > 0 and v on 
C ,  

(2.1) 
where A is a constant independent of Y and k .  

If ( v9 k ) I < A I I v I ’-’ 

Proof: This bound follows immediately from the inequalities (4.13) of Brander 
1969a). 
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Figure 1. The integration contour C. 

Theorem 2.2. If V ( r )  satisfies the conditions (1.2) with y F 1, then for all v on C 

lf(v, k +6)- - f (v ,  k)I SAz(k)S/IvI’-’ (2.2) 

where 6 > 0 and A 2  is independent of v but, as indicated, can depend on k. 
The proof, which is rather long, will be given in Appendix A. It is based on the 

methods of Bessis (1964, 1965) used to obtain bounds on lf(v, k) l .  
Let us now consider the double spectral function p(s, t )  which has for y > 2 from 

equation (4.10) of Brander (1969a) the representation 

p(s,  t )  = (-i/k) f ( v ,  k)f*(v*, k P - 4  (1 + t / 2 k 2 ) v  dv. 
C 

From this representation Brander derived the bound: 

(2.3) 

valid for all s > 0, t 3 4 p 2  + p4/s when the potential is non-singular at r = 0. 

continuity condition on the double spectral function. 
Using the bounds given by theorems 2.1 and 2.2 we prove the corresponding 

Theorem 2.3. If V ( r )  satisfies the conditions (1.2) with y> : ,  then for given S > O  
and all t k 4 p 2 + p 4 / s  there exists c 2 >  0 such that 

lp ( (k  +SI’, t ) - p ( k 2 ,  r)l  < A 4 ( k ) 6 e 2 t L ~ 1 - c - ’  (2.5) 
where A 4  is independent of t and 6. 

+ Since Re  v < Lo - U on C, we change Lo to Lo - U in Brander’s bound. 
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The proof again is rather long and will be given in Appendix B. 
Using the above bounds we can follow the well worn path of deriving the Mandel- 

stam representation (1.1). From the bound (2.4) it follows that ImF(s ,  t )  satisfies the 
dispersion relation 

Lib-1 m 

j = O  4 @ 2 + @ 4 / S  
Im ~ ( s ,  t )  = p j ( s )  + ( tLO/ r )  p(s,  t ' )  dt'/t'Lo(t'-f). (2.6) 

Then equation (1.1) follows if the double integral exists. We will show this in the 
following theorem which uses the bounds (2.5) and (2.4). 

Theorem 2.4. If V ( r )  satisfies the conditions (1.2) with y > $ ,  then the double 
integral in equation (1.1) exists for t < 4p'  and s > 0, and 

f: [tLil/(s' - s)][ 
m 

p ( s ' ,  t ' )  dt ' / t 'Lo(t '  - t ) ]  ds' = rL0 J412 $(s, t ' )  dt'/(t' - t)t'Ltl 
4p2+&L4/s'  

(2.7) 
where 

$(s, t ) = i : p ( s ' ,  t )ds ' / (s ' -s) .  

For all t 3 4p ', 

with A s  independent of t .  

Proof: Let I be the integral on the LHS of (2.7) and 11, 1 2  and I3 the corresponding 
integrals over intervals [O, sl], [sl, sz] and [sz, a] respectively where 0 < s1 < s < st < a. 

Then 

Il = fLcl 1" [l/(s'-s)][ 1 
W 5 1  

p(s ' ,  t ' )  dt/t""(t'-t) ds' 
4rZ+Cr4/s '  

1 
m 

- tLo [l/t 'LO(t'-t)][ 1'' p(s ' ,  t ' )  ds'/(s'-s) dt' 
- I,,, 0 

(2.10) 

since the double integral is absolutely convergent as follows from (2.4). Also from this 
bound, it follows that 

with 

Again using equation (2.4), 

I 3  1 
m CO 

= tLo Is, [l/(s'-s)][ 1 p(s ' ,  t ' )  dt'/t'L"(t'-t) ds' 
4 & 2 + W 4 / S '  

m 

= tLn 1,9~(s, t ' )  dr'/t'Lo(t'-t) 

(2.11) 

(2.12) 

(2.13) 
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with 
m 

/4ds, t’)l S I Is, p(s ‘ ,  t ’ )  ds’/(s’- s ) /  s A7(s) t ’Lo-“-L 

Finally 

1403 

(2.14) 

1 
m 

h = i ‘ ” ~ ~ [ l / ( s ‘ - s ) ] [ I  4f i2+w4/s ’  dt’p(s’, t) / t’Lo(t’-t)  ds‘ 

m 

+tLo Is: [l/(s’-s)]{ I 
since from equations (2.4) and (2.5) both single and double integrals are absolutely 
convergent. The order of integration in the repeated integral may therefore be 
interchanged so that 

[dt’(p(s’, t ’ ) - p ( s ,  t’))]/tfLii(t‘-f)} 
4 @ 2 + & 4 / S ’  

.m 

(2.15) 

where 

Also using the bounds (2.4) and (2.5), 

1G2(s, t ’ ) l< A9(s)tfL0-“-’.  (2.17) 

Combining these representations and bounds for the I,, equation (2.7) follows with 
4(s, t )  satisfying the bound (2.9). 

Proceeding in the standard way, one substitutes equation (2.6) in the Khuri 
dispersion relation for F(s,  t )  to obtain the Mandelstam representation (1.1) for F(s ,  t ) .  
Theorem (2.4) shows that the double integral exists and that we may write equation 
(1 .1)  in the form 

ReF(s ,  t ) = F B ( t ) +  T , ( t ) / ( s + s i ) +  1 (ti/,) p j ( s ’ )  ds’/(s’-s) 6 W &-’ 

i =O j = O  

G(s, t‘) dt’/trLo(r’- t )  (2.18) 

where s > 0, t s 4p2 and with $(s, t )  defined in equation (2.8). 
It may be proved using unitarity (Blanckenbecker er a1 1960) that the spin of the 

bound states cannot exceed Lo- 1.  Therefore the bound state terms in equation (2.18) 
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only contribute to the partial waves up to 1 = Lo- 1, and we may make the expansion 
cc 

ReF(s, f ) = F B ( t ) f ( l / k )  1 (21+ 1) ReV;(s)-f?(s))Pl(cos 8) 
l = O  

where f? (s) are the partial waves of the Born amplitude. For 1 2 Lo 

(2.19) 

Refi(s)-f?(s) = Q l ( x ) W ,  s)  dx s > o  (2.20) 

x u =  1 + 2 k 2 / k 2 ,  "(x, s)  = (k/ .rr*)+[s ,  2k2(x - l)]. (2.21) 

lQ(x, s)l S A  lu(s)xL"-u-' f o r s > O , x > x o  

c 
with 

From equation (2.9) 

(2.22) 

where A 
This weight function q(x ,  s) satisfies condition (5.12) of our previous work (Com- 

mon and Stacey 1978b) and so we can construct a convergent set of Legendre Pade 
approximants to Re F(s ,  t )  in the same manner as for Im F(s,  t ) .  The following theorem 
corresponds to theorem 5.1 of Common and Stacey (1978b) and its proof is exactly the 
same, so we will not give the details here. 

is independent of x but may depend on s. 

Theorem 2.5. Let 
i ( L + l / U )  

4 3 ( U )  = vLo \Y(x, s)  dx/( l  - 2vx + v2)"2  + (ic/2)(rv - r2v2)-1/2 

(2.23) 

where c is a real nonzero constant and ro = xo + (x i  - 1)lf2, and let 

g ( w ) =  1 (Refi+Lo(s)-f?+:L"(s))(-w)' 
30 

1 =o 

= N ( w )  - C S ( w ) .  (2.24) 

If 

is the approximant to g ( w )  formed by taking ( n  - l / n )  Pad6 approximants to N ( w )  and 
S( w ) ,  then the sequence of approximants 

Lo-1 2 n  

+ ( l / k )  l = O  (2[+1)(Ref l ( s ) - f~(s ) -  p = l  abUb)PI(z)+FB(r) n = o ,  1 , 2 , .  . . 

where ab = C Y ~ U ~ ~ "  and z = cos 8, converge uniformly to Re F(s ,  t )  as n -00 for fixed 
s > 0, for all t in any closed bounded domain of the complex r plane cut from 4w2 to 00, 

when 9 (x ,  s) satisfies equation (2.22). 
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This theorem gives us a convergent set of approximants to the real part of the 
scattering amplitude for the class of potentials defined by (1.2) where y 

3. Convergent sequences for extended classes of potentials 

We will now sketch how one proceeds for 1 < y and consider in some detail the 
important case of the Yukawa potential when y = 1. The problem for these values of y 
is that the path integral expression (2.3) for p(s, t )  is no longer absolutely convergent. 
The remedy is as suggested by Bessis (1965) to subtract off the contribution of the Born 
terms and consider 

= -i/k J [ ~ ( v ,  k)-fB(v, k ) ) f * ( v * ,  k )  +fB(v,  k )  
C 

x (f*(v*, k ) - f B * ( v * ,  k))]Pv-;(l + t / 2 ~ ) v  dv. 

The integral over C is convergent for y 2 1 since 

If(v, k)-fB(v, k)I S(Ai i / IvI) I ( f (v7 k ) /  (3.2) 

with A independent of v, k .  Since I f (  v, k ) /  still satisfies the bound (2. l), it follows that 
pR(s, t )  also satisfies (2.4) and (2.5). The dispersion relation (2.6) for ImF(s ,  t )  is 
replaced by 

Lo-1 L13 

, = o  4 w Z + w 4 / s  
ImF!s, t )  = p , . R ( s ) + ( r L ( l / r )  I p R ( s ,  t’) dt’/t’Lii(t‘-t) 

+ ( l / k )  f (21 + l)If? (k)i2P/(1 + r / 2 s ) .  
/ =o  

We now consider the class of potentials where 
CD 

V(r) = ( l / r )  I exp(-ur)@(u) du. 
F 

13.3) 

(3.4) 

From standard results on the limiting behaviour of Laplace transforms, it follows that 
V(r) will satisfy the bounds (1.2) with l < y S ;  and 1 < p < 2  if as u + p ,  @(U)= 
O [ ( u  - w ) ’ - ~ ]  and as U + O O @ ( U )  = O ( U ” - ~ ) .  Also V(r) is holomorphic for Re r > p .  So 
we will consider this class of potentials? and the important pure Yukawa potential 
V(r) = Vdexp(-c~r)l/r. 

We show in Appendix C that 

? (21+ l)IfW)l29(1 + 
/ = o  

+This  class of potentials is more restricted than that given by (1 .2)  since the above relations between the 
limiting behaviour of 6 ( u )  and V ( r )  are not reversible. 
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where pB(s, t') satisfies the conditions 

and 

where qlo is independent of t and q9 is independent of s, r. Also OC S1 <;. 

theorem may be proved. 
Using these conditions and the corresponding conditions on pR(s, t)  the following 

Theorem 2.4.1. If 

where 

with l < y s i a s u + p  andO[uP-2]with l < p < 2 a s u + m ,  thenfortg(4p2,00) ,  

(3.10) 

All integrals exist and for all t > 4 p 2  

where as indicated A 12, A 13 are independent of t. 
Let us now consider the pure Yukawa potential V(r) = G[exp(-pr)]/r. Once again 

the Im F(s,  t )  has the representation given by (3.3), with pR(s, t )  satisfying the usual 
bounds. 
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In this case 
m 

ImFZB(S, t ) E ( l / k )  (21+ l)lf?(k)lZP/(1+t/2s) 
1=0 

= (G2/k3)  f (21+ l)[QI(l +p2/2k2)]2P1(1 + t/2s) 
/ = 0  

= 2 G ' j  [ l / ( t '  - t ) ( t ' ) ' / ' ( f '  - 4 p  - dt' 
4,=+w4/k2 

(3.12) 

and (Goldberger and Watson 1964) 

Re F~B(s, t )  E r-l jOm Im F'B(d, f ) / ( S ' -  s) 

,4,2+,4/s 

= 2G2 dt'[ 1 /( t')'/'(t' - t)][ 1 / (4p + /A"/ k - t') "'1 (3.13) J4, 

where in this case the weight function 

++Z(S, t') 2 r G Z 8 ( 4 p 2  + p 4 / k 2  - t')/(t')1/2(4p2 + p 4 / k 2  - t')'/*. (3.14) 

Finally let us go back to the case of Im F(s ,  t )  which we considered in our previous 
work (Common and Stacey 1978b) where we obtained convergent sequences of 
Legendre Pad6 approximants when V(r) satisfied equation (1.2) with y > i. We will 
extend this result to the cases t < y < z .  Here we use the representation (2.6) for 
Im F(s,  t )  i.e. 

Lo-1 m 

ImF(s ,  t ) =  C p i ( s ) + ( t L " / r )  I p(s ,  t ' )  d t ' / t ' L " ( t ' - t )  
j = O  4,2+,4/s 

with from (2.4) 

(3.15) lp(s, t)l G A 1 3 ( s ) f L o - u - '  p y > :  7 

(3.16) 

when t > 4p'  + p4 /s ,  where the A are independent of t. 
Using these representations and bounds, we will construct convergent sequences of 

Pad6 approximants to the respective amplitudes. We start by considering Im F(s,  t)  
above when 3 y > 2. 

Theorem 3.1. Let 
I ( u + l / u )  

q(x ,  s) d x l ( l - 2 ~ ~  + v2)'/'+(ic/2)(rOv -riu2)-1/2 (3.17) i, 44(f) = 
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where c is a real nonzero constant and let 

g ( w )  = C Imfl+Lo+l ( s ) ( - w ) '  
m 

1 =o 

= N (  w )  - cs( w )  (3.18) 

where ro = x o  + ( x i  - 1)1'2 and x o  = 1 + (1/2k2)(4p2 + p 4 / k 2 ) .  
The weight function is q ( x ,  s) = (k / . r r*)p[s ,  2k2(x - 113. If 

2n 

p = l  
gn(s)=  C c p / ( 1 + u p w )  

is the approximant to g ( w )  formed by taking (n - l / n )  Pade approximants to N ( w )  and 
S( w ), then the sequence of approximants 

2n Lo-1 

p = l  l=O 

ImFf;(s ,  t ) = ( l / k )  C [ a b ( l - u ~ ) / ( 1 - 2 u p 2 + a p )  2 3/2 ]+1/k C (21+1) Imfi(s)Pl(z) 

(3.19) 

where ab = and z = 1 + t/2k2, converge uniformly to Im F(s,  t )  as n + M for 
fixed s > 0, for all t in any closed bounded domain of the complex t plane cut from 4p2 
to CO, when V ( r )  has the representation (3.8) with t<  y s $  or when V ( r )  satisfies (1.2) 
with $< y s;. 

Proof: For :< y sz, the proof follows precisely the proof of theorem 5.1 of our 

For 2 < y s 2, the only problem is the singularity at t = 4p2 + p4/s. We may write 
previous work (Common and Stacey 1978b), taking into account the bound (3.15). 

w, s) = qlb, s) +*2(x, 3)  

where 

(3.20) 

and x o  = 1 + 2 p 2 / s  +p4/2s2,  where x1  is fixed to be greater than xo.  
To prove the theorem we have to show that ~ $ ~ ( v )  satisfies the conditions that allow 

the applications of a convergence theorem for Pad6 approximants by Nuttall (1977) 
given in our previous work (Common and Stacey 1978b). This theorem has been 
published in a slightly modified form in a paper by Nuttall and Wherry (1978). The 
above conditions are that if h ( 8 )  = lsin 8) lC$4[(1/2ro)(1 +cos e)]], then for all 0 s 8 s .rr 

(3.21) o < ~4~ < I h (e )  1 s M~ 

and 

lh(8 -se)- h(e)l  Skf3lln se/-" a > l .  (3.22) 

As in our previous work the contribution of q 2 ( x ,  s) to C$4(v) and hence h ( 8 )  will 
satisfy equation (3.22) and the RHS inequality of equation (3.21). The LHS inequality of 
equation (3.21) will be satisfied by the complete h ( 8 )  as previously described. 
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Let h,(e) be the contribution to h ( 8 )  corresponding to q l (x ,  s). Then 
I ( U + l / U )  

2 2 1/2  L”+l ‘P~(x, S) dx/( l  - ~ U X  + u~)’” 
(3.23) 

Jxv 
hl(B)=2(rou-v ro) U 

where U = (1/2r0) (1 +cos e). From equation (3.20) 

2 2 1/2 L”+1 
(X -xo)2’-’e(xl -x)  dx/(l-2vx + v 2 ) ’ I 2  

(3.24) 

For y >?i, the integral is uniformly bounded for all 0 s U S l/ro, so that Ihl(e)( satisfies 
the RHS inequality of equation (3.21). 

il” + lhl(e)l 6 cl(s)(rov - rou ) U 

Let us  now consider the continuity condition for 0 < 8 <I .TT first of all?. 

l h l ( e ) -h l ( e  +se)I 
6 21{[ro(u + S U I  - (U + S U I  2 roI 2 1 / 2  /(roo - u2r31/2)(u + 8ulL,+’ - 11 \ h l ( e  +se)/ 

+/2(rou - U  2 ro)  2 1/2 U L,,+I ‘P~(x, S)  dx/( l  - ~ U X  + u~)’” 
; (u+-su)+[Z~u+-su) l - ’  

- I,, ‘Pl(x, S ) ~ ~ / [ ~ - ~ ( U + S D ) X + ( U + S U ) ~ ] ” ~ ~  (3.25) 

where 

SU = (1/2ro)[cos(B + SB)-COS~] = (-sin8/2ro)68. 

The first term on the RHS of equation (3.25) is O ( S v )  for 0 < U < l / ro  since lh,(e + Se)l is 
bounded by a constant. 

Also 

‘P~(x ,  S )  dx/( 1 - ~ U X  + u2) ’ l2  

4 (u+Su)+[2(u+2u)l-’  

- I, W l ( ~ , ~ ) d x / [ 1 - 2 ( ~ + 6 ~ ) x + ( u + 8 ~ ) 2 ] 1 ~ 2 /  

1 1 
X i ( I  - 2UX + U 2 ) 1/2-  [l - 2 ( u  + 6 U ) X  + (U + su)’l14 dx 

(3.26) 

It is straightforward to prove that both terms on the RHS of this inequality are 
~ [ ( S U ) ” ’ ] .  Therefore for 0 < 8 < .TT, 

lhl(e) - h l ( e  + se)/ = O [ ( S U ) ’ / ~ ] .  (3.27) 

t It is assumed that $S is chosen sufficiently small so that 0 < 0 + 66 < P. 
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It is easy to show that hl (8 )  + 0 as 8 + T. Therefore when 8 = T, 

lhl(e)-hl(e-se)l = Ihl(8-Se)J 
X l  

= (Su) ‘o+;  \Irl(x) dx/[l-2Sux +(SU)’ ]~’~  (3.28) 

= 0[(Se)2‘~)+3]. 

Similarlywhen y > $ ,  hl(8)+Oas 8 + 0 i . e .  u + l / r o s o  that 

1h1(8)-h1(8 +a81 

s h l ( e  + S O )  - cl(s)[rou - rg(u + SU)~]~’’(U + S U ) ~ ( ] + ’  

X I  

\Irl(x, S) dx/[l-  2 ( ~  + S U ) X  +(U + SU)~]”’ i,, 
= o[(Su)2’-;] = 0[(S8)4’-3]. (3.29) 

From the three inequalities (3.27), (3.28) and (3.29) we see that hl(f3) satisfies (3.21) so 
long as y >a. Hence h ( 8 )  satisfies the conditions (3.21), (3.22) so that as in our previous 
work the sequence of approximants defined by (3.19) converge uniformly to Im F(s,  t )  
as n + 00 for fixed s > 0, for all t in any closed bounded domain of the complex r plane 
cut from 4w’ to 00. 

Finally we give the corresponding result for the approximants to the real part of the 
scattering amplitude. 

Theorem 3.2. Let Re F(s,  r )  be the scattering amplitude corresponding to a potential 
V(r) having the representation (3.8) with 1 < y S? ,  1 < p  < 2, or corresponding to the 
Yukawa potential V(r) = G[exp(-pr)/r]. Then the approximants Re F f ;  (s, t )  defined 
by equation (2.25) converge uniformly to Re F(s,  t )  as n + for fixed s, for all t in any 
closed bounded domain of the complex r plane cut from 4p’ to 00. 

Proof: The result follows from the bounds (3.1 1) and (3.14) for the respective weight 
functions +bl(s, t ) ,  +bz(s, t). As in theorem 3.1 the singular parts of these bounds give no 
difficulties and the proof follows that of the above theorem. 

4. Conclusions 

We have extended in this work the class of potentials for which convergent sequences of 
Legendre Pad6 approximants to the imaginary part of the scattering amplitude may be 
defined. We have also shown that convergent sequences of these approximants to the 
real part of the scattering amplitude may be defined for a wide class of potentials, 
including the pure Yukawa potential. In a following paper numerical results will be 
presented for this very important case of the Yukawa potential. 
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Appendix A 

We prove here the continuity condition (2 .2)  on f ( v ,  k )  for all points on C when V ( z )  
satisfies bounds (1 .2)  with y 3 1 .  The method follows exactly that used by Bessis (1964) 
in the proof of bounds on If(v, k ) (  so we will only sketch the proof of the condition (2 .2) ,  
referring to the above work for the details. 

From the holomorphy property of V ( r )  in Re r and from the bounds (1 .2) ,  it follows 
that 

where K1, p1 are constants with O<pl < p .  Remember that p C 2 and we are taking 
y 3 1 .  

We make the definition V ( k ,  z )  = ( 1 / k 2 )  V ( z / k )  and we can deduce from equation 
(A.  1 )  that 

where Kz is a constant. 
To deduce the corresponding continuity condition on f ( v ,  k )  we start from the 

Volterra equation for the regular solution u,-i(k, z )  to the Schrodinger radial equation. 
This is (Bessis 1964) 

The amplitude f ( v ,  k )  is given by 

f ( v ,  k )  = -A(v,  k ) / [ l  +iB(v, k ) ]  ( A . 4 )  

To prove continuity of f ( v ,  k ) ,  we have therefore to prove continuity of u,- i (k ,  z ) .  
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From equation (A.3) 

u,- ; (k  +s, z ) - u , - & ( k ,  2) 

= i Joz [J ,  H I [  V(IC + S, 2’) - ~ ( k ,  z ’ ) luy- :  (k, z ’ )  dz’ 

+ i Joz [J,  HI ~ ( k  + S, z’)[u,-;(k + S, z ’ )  - U,-; ( k ,  z’)]  dz‘ (A.6) 

where 

[J, HI = (.rrz/2)1/2Jy(z)(.rrz’/2)1~2H~1) (2’) - (.rrz’/2)1’2J”(z’)(.rrz/2)’/2HI” (2). 

The integrals from 0 to 03 in equation (AS) are not taken along the real axis, but 
along a contour T(v) which runs along the straight line from 0 to v and then along the 
anti-Stokes line S for Bessel functions from v to 03 (Bessis 1964). We can arrange the 
contour C so that on it / V I  3 1. Then on T(v)  one has the bounds 

with c < 23, a purely numerical constant. 

Iu,-i(k, z)l s c 1  exp[-Re v(a -tanh a)]lz/1/2/lv2-z211/4 

Using these bounds in (A.3), Bessis obtained the bounds 

for z on straight line part of r(v), and for z E S 

1u,-:(z)/<C~(lz11/2/1v2-z211/4)(1+2~~) exp[2c: [,‘(1z’1/lv2-z ,2  I 1 /2  ) I V ( ~ ,  z ~ ]  

(A.9) 

where B1 is an upper bound to the contribution to B(v ,  k) of the integral in equation 
(AS)  from 0 to v. 

Using the bounds (A.7) to (A.9) in (A.6) we can prove in the same way that, for z on 
0 to U, 

and for z E S,  

(A.10) 

(A. 11) 
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where 

(A.12) 

and 

The above bounds on IuY-;(k + 6, z )  - u,-;(k, z)l may be used to derive a continuity 
condition on A(v,  k) since 

z)[ V ( k  + S ,  Z )  - V ( k ,  z ) ] u , - ; ( ~ ,  Z )  dz 

s c 1 1 2 ( v ,  k, S) exp[2c211(v, k)]{l +2B1 
2 + c 1  exp[2c:Il(v, k + S ) ] [ I l ( v ,  k +S)]*[2+4exp(2c:I1(v, k +SI)]}. 

(A.14) 

A similar bound holds for B(v,  k). 

C, and for k > 0 
Bounds on the integrals I l ( v ,  k) have been given by Bessis (1964) and are for all v on 

where c2 is independent of v, k. Similarly since the bounds (A.2) on I V ( k  + 6 , z )  - 
V ( k ,  t)l are just (S /k) ( l+  1/k2) times those on V ( k ,  z )  it follows that 

I2(v, k, S)<(c3S/k)(l+ l/k2)/lvly-1 (A.16) 

where c3 is independent of k, v, 
Finally we may write, 

A ( v ,  k ) - A ( v ,  k + S ) + i { [ A ( v ,  k ) - A ( v ,  k + S ) ] B ( v ,  k+S) 
+A(v ,  k + S ) [ B ( v ,  k + S ) - B ( v ,  k)]} 

. (A.17) [ 1 + iB (v, k )I[ 1 + iB (v, k + S)l f(v, k + 8 )  -f(v, k) = 

Since f( v, k + S ) ,  f( v, k) have no poles on C ,  i.e. 1 + iB( v, k), 1 + iB ( v, k + 6 )  have no 
zeroes on C, then for y > 1 there exist el  > 0 such that 

for all v on C. 

continuity condition (2.2) on f ( v ,  k) for y 3 1. 
Using the bounds (A.18), (A.16) and (A.14) in (A.17) one finally arrives at the 
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Appendix B 

In this Appendix we give the proof of theorem 2.3. We can write 

p ( ( k  +SI2, t ) - p ( k 2 ,  t )  

= [-i/(k + 611 I V(v, k +S)f*(v*, k + 6) - f ( v ,  k ) f " ( v * ,  k)} 
C 

xP,-i[l +t/2(k +6)2]v dv [-i/(k +6)1 I f ( v ,  k ) f c ( v * ,  k) 
C 

x {Pv -4 [ 1 + t /  2 (k + a)'] - P, -4  ( 1 + t/ 2 k ')} Y d Y 

x [ - i 6 / k ( k + 6 ) ]  / f ( v ,  k)fr(v*, k)Pv-i( l  +t/2k2)v dv. 03.1) 
C 

Let li ( i  = 1,2 ,3)  be the three contour integrals on the RHS of (B.1). We further write 
Ii = +Ji.2, where Ji,l, Ji.z are the contributions to I, from the straight-line part rl and 
curved part r2 of C respectively. 

On rl, the straight line part of C, let v = a + iy with y real. Use is made of bounds on 
Legendre functions and their derivatives for these values of v given by Atkinson and 
Frederiksen (1975). In particular, using inequality (A.22) of that work, 

IP,-;[l+ t/2(k +6)2]1 c q1(k)jvl-1/2t-1/4 t>0 ,  v = t + i y  (B.2) 

where ql (k )  is a known function. 
Now 

XP,-:[l +t/2(k +S)2]v dv 

for any O < E ~  < 1, where the bound (2.1) has been used. Then using (B.2), (2.1) (2.2), 

where v2(k)  is independent of t. When y > 2  one can choose 
make integral convergent so that 

sufficiently close to 0 to 

IJlJ q3(k)6"/t1/4 03 .5)  

where depends on y. 

the bound 
Similarly using equation (A.23) of Atkinson and Frederiksen (1975) one can prove 

IP,-;[l + t / 2 ( k  +6)2]-P,-;[l +t/2k2]ls (B.6) 
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for v on rl. Using this result 

-P,-;[l +t/2kZ]}v dv C 774(k)Scz/t1/4 03.7) 
for some €2 > 0 which depends on y and q4 is a known function of k. Finally using again 
(B.2), (2.1) when y > $ ,  

IJ3,i l= I [b /k (k  +a)] f ( v ,  k ) f * ( v * ,  k)P,-;[l +t/2k2]v d v l c  775(k)8/ t ' /4  (B.8) 
C 1  

where q 5 ( k )  is independent of 6, t. 

bounds 

and 

J(dPu-; /d  cosh &)(cosh & ) I S  I V   IT'" ( l+ lco tha l )exp[a  Re(v-$)]. 

Let us look now at the contributions from the curved part r2 of C. We use the 

(B.9) 

(B.lO) 

IP,-:(cosh a)[ C i~"' exp [a Re(v -f)] 

From the latter inequality with cosh a = 1 + t/2k2, 

IP,-;[l+t/2(k +S)2]-Py-;[1 +t/2k2]1 

C ( S t i ~ ~ / ~ / k ~ ) ) v  -$l[l +Jcoth all xexp [a Re(v -$)I 
Now on r2, Re( v - t) c Lo - (T - $, so that on y 2  

and 

IPu-;[l+t/2(k +S)2]-P,-:[l +t/2k2]1 

lP,-i(cosh a ) ld~1/2(2+t /k2)Ln-u- '  

(B. 11) 

(B.12) 

(B.13) 

Therefore, since r2 is of finite length, the bounds (2.1), (2.2), (B.12), (B.13) may be used 
to put bounds on the contributions to the RHS of (B.l) coming from the integrals over r2. 
They are 

IJ',2l c 7)6(k)StL"-"-t (B.14a) 

IJ3,2( q7(k)StL"-"-' (B.14b) 

152.21 c 7 7 8 ( k ) 6 e 3 t L o - u - t  ( B . 1 4 ~ )  
with the v i  depending on k. We can combine equations (BS), (B.7), (B.8) and (B.14) to 
give the bound (2.5) on l p [ ( k + S ) ' ,  t]-p(k2, t)l, remembering that the contour C is 
chosen so that Lo - (T > $. 

Appendix C 

When V ( r )  has the representation (2.30), 
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By standard methods as in (Atkinson and Frederiksen 1972), one can use this form 
for f? ( k )  to prove that 

f W +  l)lf?(k)12Pi(z) 
1=0 

m c c  00 

= ( l / 8 k 2 )  J J 4(u1)4(u2)  J [dz’/(z’-z)lh-’/2(z’, ~ 1 ~ 2 2 )  ( c . 2 )  
F F  2 + ( 2 1 , 2 2 )  

where z+(zl, z2 )  = z1z2*(z:- l )1’2(z;-  1)’12 with zi = 1 + u ? / 2 k 2  and 

h ( 2 ‘ ,  2 1 , 2 2 )  = Z t 2  + 2:  + 2:  -22’2122 - 1. 

Interchanging the orders of integration in (C.2) we find that 

03 z _ [ ( l + f ’ / 2 k 2 ) , (  1 + r 2 / 2 k 2 ) 1  

4(u2)  d ~ 2  1 Jw = ( t / 8 k 2 )  J 
( 4 w 2 + w 2 / k 2 )  

, F ~ - [ ( l ~ ~ ~ ’ / 2 k 2 ) , ~ l + ~ ~ / 2 k 2 ) ]  

4 ( ~ ~ ) h - ’ / ~ [ ( l  + t / 2 h 2 ) ,  ( 1  + u:/2h2) ,  

x ( 1  + u: /2h2)]  dul]dt’/r’(r’ - t ) .  (C.3) 

It can be proved that with the prescribed limiting behaviour of 4 ( u )  the triple integral is 
absolutely integrable for t not on the cut from 4 k 2 + w 2 / k 2  to infinity, so that this 
interchange of order of integration is allowed. Therefore we may write 

f (21+1) / f7(k) (2P/ (1  + t / 2 k 2 )  
I=O 

where 

P B ~ ,  t )  = ( l / 8 k 2 )  
JFz-[(l+r/2k2),(l+~2/2k2)l 

4(u2)  d ~ 2  

,Fz - [ ( l+r /2k2) , ( t+u~ /2&z) l  

4 ( u l ) h - ’ / 2 [ ( 1  + t / 2 k 2 ) ,  

x ( 1  + u: /2k2) , (1  + u : / 2 k 2 ) ]  dut.  (C.5) 
Using the given bounds on the behaviour of 4 ( u )  as U -00 and U + p ,  it is 

straightforward but tedious to show that 

J ~ B ( s ,  t)i C 7798(t - 4~ - /A ‘/ k2)[k3-2YtY/2-S(2 + t /2  k 2 )  *- ’( 1 + /.L ’/ k2)’-2r 
x ( t - 4 w 2 - p 4 / k  2 ) - $ + 2 Y +  t P / 2 - :  / k  + t - 5 C Y / k + k - ’ / 2 i 4 k 2 + w 2 ) - 1 / 4  

(C.6) 
where q9 is independent of t, k. 

We can also derive a continuity condition for pB(s, t )  analogous to (2.5). The 
method is to use continuity conditions on the Mandelstam kernel h - ’ l 2  given by Kupsch 

x t f - Y / 2  (2 + t/2k2)“Y/2] 
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(1970). They are that defining 

K(s ,  t ,  t l ,  t 2 )  = { 8 ( k 2 + p 2 ) 1 / 2 k 3 } - 1 h - 1 f 2 ( 1 + ( r / 2 ~ ) ,  

x 1 + ( t1 /2s) ,  1 + (t2/2s)) if (s, t ,  t l ,  t 2 )  E D 

= O  if (s, t ,  t l ,  t 2 )  & D (C.7) 

then if s’>s, O<Sl<: 

o < K ( ~ ,  t ,  t l ,  t 2 ) - ~ ( s ’ ,  r, t l ,  t 2 ) s l ~ ( s ,  t, t l ,  t 2 ) ~ 1 + 2 S ~ ~ 2 t 2 s 2 ~ s ’ - ~ ) / s ’ ~ s ~  

when (s, r, t l ,  f 2 )  E D, and 

(C.8) 

I K ( S ,  t, t l ,  t 2 ) - ~ ( s ,  t’, t l ,  tZ) lsJK(s’ ,  r, t l ,  t 2 ) / 1 + 2 S i / t 2 s ’ ( ~ f - ~ ) S i l  (c.9) 

when (s, t, t l ,  t2 )  E D and (s’, t, r l ,  t 2 )  E D. Here D is the domain of values of (s, r, t l ,  f 2 )  

such that 

(1 +2t/s)’+(l +2t1/s)’+(1 +2t2/~)2-2(1+2t/s)(1 +2t,/s)(1 +2r2/s)- 130 .  

Combining these inequalities with the bounds on #J(u), one finds after some labour that 

I P B ~  t )  -PB(SI, t ) /  

s vl&, sl){[ls - ~ ~ l / ( k ~ + p ~ ) I l ~ ~ ( s ,  t)l 
+ ( / s - s 1 / S 1 / l k 2 + p  2 I 1/2  ) t  26 ‘[t4 ’ + 3 6 , / 2 - y ( t  -4p2-p4/k4)-f+2y-61 

+ 
+S, + ?-:-SI / 2  + t s - v + 3 6 , / 2 1 }  

x O ( t - 4 p 2 - p 4 / k 2 )  + ( s ~ @ s )  (C.10) 

where vl0 is independent of r and 0 < S1 < i. 
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